A Clean, Well-Lighted Place - определение. Что такое A Clean, Well-Lighted Place
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое A Clean, Well-Lighted Place - определение


A Clean, Well-Lighted Place         
SHORT STORY BY ERNEST HEMINGWAY
A Clean Well Lighted Place
"A Clean, Well-Lighted Place" is a short story by American author Ernest Hemingway, first published in Scribner's Magazine in 1933; it was also included in his collection Winner Take Nothing (1933).
All's Well That Ends Well         
  • A 1794 print of the final scene
  • A copy of Boccaccio's ''The decameron containing an hundred pleasant nouels. Wittily discoursed, betweene seauen honourable ladies, and three noble gentlemen'', printed by [[Isaac Jaggard]] in 1620.
PLAY BY SHAKESPEARE
All's Well that Ends Well; All's well that ends well; Capilet; Parolles; All's well that ends well (proverb); Alls Well That Ends Well; All's Well That End's Well; All's Well, that Ends Well
All's Well That Ends Well is a play by William Shakespeare, published in the First Folio in 1623, where it is listed among the comedies. There is a debate regarding the dating of the composition of the play, with possible dates ranging from 1598 to 1608.
well-ordered set         
TOTAL ORDER SUCH THAT EVERY NONEMPTY SUBSET OF THE DOMAIN HAS A LEAST ELEMENT
Well-ordered set; Well-ordered; Well-ordering; Well ordered; Well ordering; Well-ordering property; Wellorder; Wellordering; Well ordered set; Wellordered; Well ordering theory; Well ordering property; Well-Ordering; Well-Ordered; Well-orderable set; Well order
<mathematics> A set with a <a href="">total orderinga> and no infinite descending <a href="">chainsa>. A total ordering "<=" satisfies x <= x x <= y <= z => x <= z x <= y <= x => x = y for all x, y: x <= y or y <= x In addition, if a set W is well-ordered then all non-empty subsets A of W have a least element, i.e. there exists x in A such that for all y in A, x <= y. <a href="">Ordinalsa> are <a href="">isomorphism classesa> of <a href="">well-ordered setsa>, just as <a href="">integersa> are <a href="">isomorphism classesa> of finite sets. (1995-04-19)